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Quenching of a Brownian oscillator

V. A. Shneidman and D. R. Uhlmann
Department of Materials Science and Engineering, The University of Arizona, Tucson, Arizona 85721
(Received 12 May 1998; revised manuscript received 7 Decembep 1998

An asymptotic analysis of a classical Brownian oscillator in a fluid with diverging viscégiass-forming
melt) is presented. For a quench-heating cycle, which is slow on the scale of the oscillator frequency, an
explicit expression for the temperature-dependent specific bERY, is derived. In appropriate variables the
shape of thec(T) curve is universal, being insensitive to the details of the temperature dependence of the
viscosity. The values of quenched-in energy and entropy also are obtg81163-651X%99)07404-§

PACS numbdps): 05.40—a, 05.70.Ln, 64.70.Pf

Starting from the early days of condensed-matter physicssinstein relation (fluctuation-dissipation  theorem
important insight into thermodynamic behavior was gained(&(t)£(t'))=2yT(t—t’) with the temperature measured in
through the analysis of simple oscillators — see, e.g., Refunits of the Boltzmann constant. At high temperatures,
[1]. Kinetics of a harmonic oscillator in a thermal bath, de-damping is assumed to have an approximately constant small
scribed in terms of Brownian motion, also received muchvalue, yo<wq, but with lowering of T the dimensionless
attention[2,3] as models of various stochastic processes. fynction 3= ¥(T)/y, becomes large. In fact, during the

The intent of the present paper is the analysis of a classioyrse of a quench, dampirithus viscosity acquires very
cal Brownian oscillator(or an array of such oscillators |arge (effectively infinite values in a finite time interval—a
placed in a fluid with a viscosity which rapidly increases sjtyation typical for a glass-forming fluid.
with the lowering of temperature. The latter is typical for a  Equation(1) will be treated for a macroscopically slow
glass-forming mel{4,5]. At low temperatures the behavior uench with a rate= — T< ¥oT, with subsequent reheating

; . ; g
of such oscillators is expected to become nonergodic, WltTvith the same rate. With these specifications, the problem

drﬁmhatlchFE.?rquynt?]ml.c contsequer}ctis. Forn cithe(; mode g fully stated, and can be solved both exactly and asymptoti-
which exnibit aging, the importance of the oscillator escrlp-ca"y, being of certain independent mathematical interest. In

t'or\}i W"(ijs. ?Iso recognlzle[ﬁ]. f the att ts of a fi tview of applications a note of caution should be added since
e distance ourselves rom the attempts o a NrSty,o oyiant of applicability of the Langevin equation to a very
principles explanation of the complicated behavior of the

vi itV in al forming fluids. Rather we intend to sh inscous fluid is currently unclear. More general, non-
Scosity In glass-1o g fiuids. Rather, we Intend 10 SNowy sy qvian pictures can be mentiong8l. Nevertheless, the

:Eat onge the v ISCOSItyt_IS kn?\{\{]n, It3he sp_ecmc hﬁlai and Otg rangevin picture is expected at least to be reasonable in its
beirr_no dy'?am'c propelr |fes 0 be _rownlap oscl! a_lor_(t:_an tegeneral features; and the results potentially are of broader

obtained in a genera“ orm, bearing certain similari ',?S Ovalidity than the model, as will be discussed in the conclud-

what is known as a “calorimetric glass transitig®T) :

[4,5]. (The similarity, however, will not be pursued in the ng part. ; -

T~ ¢ K ’tf th P | f termino) Equation (1) corresponds to a two-dimensional Fokker-
present work, except for the occasional use of terminology. e equation for the distribution function
Remarkably, when cast in appropriate variables the specific
heat curves turn out to be insensitive to the details of the
temperature dependence of the viscosity, but only because 9 9 5 L
this viscosity virtually diverges when the system is cooled f(x.p.t)= axp+ ap(w0X+ YP)+ VTapz f, @
sufficiently low.

Belc_Jw we s_hall anglyze the _thermodynan_uc b_eha_VIor_ of awherep is the momentum of a particle.
Brownian oscillator via a detailed study of its kinetics in a . :

; . . It is well known that equations of the above type have
cooled and reheated system with the viscosity of the aforeéolutions which are Gaussian with respectxt@nd b but
mentioned kind. The Fokker-Planck-type equation which de- P P

X . : . which can have an arbitrarily complicated time dependence
scribes a Brownian oscillator, at least formally, is an exactly

solvable ong2,3,7]. This feature will be exploited in the of the coefficients. Assuming an equilibrium distribution at

L -~ t=0, we will seek an even solution in the form
present work, although it will be seen that much more im-
portant is the further possibility of an asymptotic treatment
which allows one to establish certain universal features in the f=(JDi2m)exp{— a()x?— B(t)p?— &s(t)xp},  (3)
nonequilibrium thermodynamics of the oscillator.
A Langevin equation for the positior, of a Brownian whereD denotes 43— 6 and the coefficients, 3, and &
oscillator of a unit mass has the form obey a nonlinear system of ordinary differential equations

(92

X+ X+ wix=&(1). 1) a=wio—yT6%, B=2yB(1—-28T)—68, (4

Here wy and y are the frequency and damping, respectively, ) )
and £(t) is the random force with intensity given by the 0=2(wpB—a)—yé+2ys(1-2pT). )
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Once the values of, B, and § are obtained, one can _ 1 (=
compute all relevant thermodynamic quantities, namely the U0)=5 fo drT(—7)exp(— 7). (11)
average kinetic and configurational energies,

— — In the limit of small q the temperatureT is a slow
K=a/D, U=pwg/D, ©) (logarithmic-type function of = which follows from Eq.
as well as the entropyS and the specific heatC (10). Le_t T, Qetermine the temperature fpr whie’rf—l.
_ . ExpandingT in powers of In- and performing the integra-
=d/dT(K+U): ; .
tion, one obtains

sz—ffdxdpfln(f/e)=2+|n{2ww6}, (7 U(O):%{T*—o.sm.../(—|n”y)'T}E%Tf, 12

C=(T)"yT(1-2a/DT). (8)  where the logarithmic derivative is evaluatedlat T, . Pri-
marily, the quenched-in structural energy is determined by
In the static casel =0, Egs.(4) and(5) have three nega- T./2; the correction term — the one with Euler’s constant in
tive eigenva|ues for Strong damplng>2\/§w0, or one Eq (12) — is useful for estimations of accuracy of the lead-
negative and two complex eigenvalues otherwise. One cald expressionT; is similar to what is known as “fictive
show that for an arbitrary quenci €0) the value oD (t) temperature” in glass transformation literaty#e12]. Spa-

remains positive, so that the even solution under considef!? fluc(;uatmns ‘f’}_rg _frozc;rttlnTwnTr? d|sr:r|but|9nlwh|chl_kc)0r-
ation is reasonable; for more complicated thermal scheduleéﬂeSponhS to equil ”T.E‘ | —f Ejat oug ha strictly eqU|f| _h
however, the situation is less clear and lies outside the scope’™ shape, most likely, Is due to harmonicity of the

of the present work9]. oscillatop. - _
For infinitely slow processes, Eq¢4) and (5) predict Sincey increases at lowl faster than an exponential, the

standard equipartition wittr=w2/2T, B=1/2T, 5=0, and value of T, changes with the quench rate slower than a
C=1. For finiteT we still assume that the quench is slow on Ii)ganth/mf_lflf)r exqmple, ford t_?e Emplrlcal dtehpen\(/jerbcle

a “molecular scale” (i.e., compared taw). Violation of Ejéﬁ{e’;( arar?z}étéylone’(hsg o Known as the Vogel-
equipartition is possible due to large valuesyot low tem- P s

peratures. Indeed, the systéd) and(5) has a small eigen- T, =To+«/[IN(,/q)—2 In In(x/q)] (13
value —wg/'y, implying a diverging relaxation time in the o ) . .
strongly overdamped case. so that the fictive temperature increases approximately in-

In the limit y—o, Egs. (4) and (5) lead to near- versely proportional to the absolute value of the logarithm of

equilibrium values of3 and &; deviation of 3 from 1/2T is  the quench rate, approachifig in the strict limitg=0.
still important, however, for correct evaluation of specific I[N the same approximation one gets the entropy, (£g.
heat from Eq.8). The value ofD remains positive for both as

uench and heating stages. The equationofaesults in a _ — 5
Enown form of the ?elaxgtion equati?)n for the structural en- S(T)=(1/2In(UT) +In(e 277\/5/(00)' (14
ergy At T—O0 its structural part acquires a quenched-in value of
_ — (1/2)In(T;/2).
du/dt=(T/2—U)2wq/y. 9 The = dependence of the specific heat is given by

For U to be close to its equilibrium values, relaxation 11 N , o
must keep up with the changing temperature. Equations of Cln=5+ E(dT/dT) lfo a7 (T Texp =7 ydr".
type (9) with different phenomenological relaxation times (15)
received much attention in the pd4i0,11. What was not i o _
expected, however, was that a closed-form solution of sucfin€ value odT/d7 in the above expression is determined by
equations is possible at loW which is asymptotically insen- 1/7(—In %)7. In the limit g—0 the logarithmic term varies
sitive to the details of the relaxation temperature dependencgowly compared to I, and the second term in E(L5) can
and which describes both the quench and the heating stagd® evaluated asymptotically as (1/2)7exp(—7)Ey(—1),
Let us switch to a dimensionless “time,*, defined as where E; is the first exponential integrdll3]. Reheating
dr=dt2w}/y with a zero value aT =0 and negative values With an identical rateq can be described as an analytical
in the quench stage. Due to a rapid increase of damping ontinuation of the above expression to positvd his leads

low temperatures, one has to an exponential integral, Eif=—E (— 7), and gives for
. _ . C=(1/2)(1+ 6C) the following expression:
T~ +{ay(=In )7 (10 SC=1+ rexp— n)Ei(7). (16)

The upper a_nd lower s~ign corresgohd to que_nch a_nd reheatyis variable part of the specific heat which is a universal
ing, respectively, andq=qyo/2w; is the dimensionless fynction of the scaling parameteris shown in Fig. 1. Spe-

quench or heating rate. cifics of a particular system enters through relationrdb
The values ofU are insensitive to conditions at— — the quench rate and the dissipation via Ef0). During a
where equilibration is fast, and one obtains for thequench one get§C~1/2 at=—0.614 ..., which can be

guenched-in structural energy associated with the calorimetric GT. The temperature of this
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FIG. 1. 5C Eq. (16) as a function of the scaling parameter,
for the quench £<0) and reheating#{>0) stages.

GT can be estimated ag~T, —0.49/(—In })} (with loga-
rithmic derivative evaluated 8t=T, ), and is rather close to
Ts.
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FIG. 2. Temperature dependence of the specific heat during
quench and reheating witlg=10"2 K/s. Viscosity data for
o-terphenyl by Laughlin and Uhiman(i972 were used to evaluate
7 in Egs. (16) and (17). Changingq by a factor of 10 shifts the
curves by about 4 K.

ation equation will have the same form of the solution given

To obtain&C as a function of temperature, the oscillator PY Ed-(16), regardless of the underlying model.

frequencyw, can be estimated as the speed of sound,

over the intermolecular distance. Damping can be estimateg)

from the Stokes relationy=6ma»n/m, with a andm being
the molecular size and mass, respectively, aritie viscos-
ity of the fluid. One thus obtains

1vip

T~ —— 17

q 91

for the scaling parameter with p~m/a® being the density.

A typical shape of theSC(T) curve is shown in Fig. 2
using parameters froro-terphenyl for the viscosityy [14].

Note the closeness of the GT to the experimentally observe

For an array of oscillators with a densitf w) one needs
consider contributions of each mode. Assuming that the
amping parameter for each mode is identical, one has from
Egs.(10) and (16) written in dimensional variables

5co<(|dn/dt|/v§p)1’2[ J T d T exp — 7)Ei(7)
0

(18

with rmax=2wﬁqa>j(dy/dt). Note that the presence of slower
oscillators does not have a dramatic effect on the location of
the GT, although the shape of th€(T) curve can be modi-
fied. Specifics of this curve are determined by the explicit
form of the spectral densityy(w). For example, for a
eower-law spectrundC(T) will remain a universal function

Of Tmax- An interesting point is the dependence of the result
on the rate of the viscosity change, but not on its absolute

A . . Yalues. A detailed investigation &iC(T) for typical spectra
strong S|m|Iar|t|e_s to e_xperlr_nental observations, as V\_/eII as tqill be presented elsewhefs].

results of numerical simulations — see, elg,12,16. Since To summarize, an asymptotic study of the nonequilibrium
the dimensionless parametqris smaller than 102, the  thermodynamics of a quenched Brownian oscillator in a fluid
proposed asymptotic description is virtually exact for the ex-with diverging viscosity was performed. It was shown that
ample considered. Generalizations of the result for unequahe system exhibits certain qualitative features of a calori-
quench-reheating rates will be discussed in IR®f.It seems metric glass transition, namely the abrupt drop in specific
appropriate to remark that experimentally realistic shapes dfieat(and its overshoot during reheatjpgnonzero values of
the SC(T) curves could signify not only the adequacy of the the quenched-in structural energy, and residual entropy. Ana-
proposed Brownian oscillator picture, but also the archetypalytically, the key result of the study is the expression for the
nature of a single-time relaxation E@). For any relaxation variable part of the specific heat, H46), which is a univer-
time which rapidly increases at low temperatures, the relaxsal function of a single scaling parameter,
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