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Quenching of a Brownian oscillator

V. A. Shneidman and D. R. Uhlmann
Department of Materials Science and Engineering, The University of Arizona, Tucson, Arizona 85721

~Received 12 May 1998; revised manuscript received 7 December 1998!

An asymptotic analysis of a classical Brownian oscillator in a fluid with diverging viscosity~glass-forming
melt! is presented. For a quench-heating cycle, which is slow on the scale of the oscillator frequency, an
explicit expression for the temperature-dependent specific heat,c(T), is derived. In appropriate variables the
shape of thec(T) curve is universal, being insensitive to the details of the temperature dependence of the
viscosity. The values of quenched-in energy and entropy also are obtained.@S1063-651X~99!07404-8#

PACS number~s!: 05.40.2a, 05.70.Ln, 64.70.Pf
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Starting from the early days of condensed-matter phys
important insight into thermodynamic behavior was gain
through the analysis of simple oscillators — see, e.g., R
@1#. Kinetics of a harmonic oscillator in a thermal bath, d
scribed in terms of Brownian motion, also received mu
attention@2,3# as models of various stochastic processes.

The intent of the present paper is the analysis of a cla
cal Brownian oscillator~or an array of such oscillators!
placed in a fluid with a viscosity which rapidly increas
with the lowering of temperature. The latter is typical for
glass-forming melt@4,5#. At low temperatures the behavio
of such oscillators is expected to become nonergodic, w
dramatic thermodynamic consequences. For other mo
which exhibit aging, the importance of the oscillator descr
tions was also recognized@6#.

We distance ourselves from the attempts of a fir
principles explanation of the complicated behavior of t
viscosity in glass-forming fluids. Rather, we intend to sh
that once the viscosity is known, the specific heat and o
thermodynamic properties of the Brownian oscillator can
obtained in a general form, bearing certain similarities
what is known as a ‘‘calorimetric glass transition~GT!’’
@4,5#. ~The similarity, however, will not be pursued in th
present work, except for the occasional use of terminolog!
Remarkably, when cast in appropriate variables the spe
heat curves turn out to be insensitive to the details of
temperature dependence of the viscosity, but only beca
this viscosity virtually diverges when the system is coo
sufficiently low.

Below we shall analyze the thermodynamic behavior o
Brownian oscillator via a detailed study of its kinetics in
cooled and reheated system with the viscosity of the afo
mentioned kind. The Fokker-Planck-type equation which
scribes a Brownian oscillator, at least formally, is an exac
solvable one@2,3,7#. This feature will be exploited in the
present work, although it will be seen that much more i
portant is the further possibility of an asymptotic treatme
which allows one to establish certain universal features in
nonequilibrium thermodynamics of the oscillator.

A Langevin equation for the position,x, of a Brownian
oscillator of a unit mass has the form

ẍ1g ẋ1v0
2x5j~ t !. ~1!

Herev0 andg are the frequency and damping, respective
and j(t) is the random force with intensity given by th
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Einstein relation ~fluctuation-dissipation theorem!
^j(t)j(t8)&52gTd(t2t8) with the temperature measured
units of the Boltzmann constant. At high temperatur
damping is assumed to have an approximately constant s
value, g0!v0 , but with lowering of T the dimensionless
function g̃5g(T)/g0 becomes large. In fact, during th
course of a quench, damping~thus viscosity! acquires very
large ~effectively infinite! values in a finite time interval—a
situation typical for a glass-forming fluid.

Equation~1! will be treated for a macroscopically slow
quench with a rateq[2Ṫ!g0T, with subsequent reheatin
with the same rateq. With these specifications, the proble
is fully stated, and can be solved both exactly and asympt
cally, being of certain independent mathematical interest
view of applications a note of caution should be added si
the extent of applicability of the Langevin equation to a ve
viscous fluid is currently unclear. More general, no
Markovian pictures can be mentioned@8#. Nevertheless, the
Langevin picture is expected at least to be reasonable in
general features; and the results potentially are of broa
validity than the model, as will be discussed in the conclu
ing part.

Equation ~1! corresponds to a two-dimensional Fokke
Planck equation for the distribution function

ḟ ~x,p,t !5H 2
]

]x
p1

]

]p
~v0

2x1gp!1gT
]2

]p2J f , ~2!

wherep is the momentum of a particle.
It is well known that equations of the above type ha

solutions which are Gaussian with respect tox and p but
which can have an arbitrarily complicated time depende
of the coefficients. Assuming an equilibrium distribution
t50, we will seek an even solution in the form

f 5~AD/2p!exp$2a~ t !x22b~ t !p22d~ t !xp%, ~3!

whereD denotes 4ab2d2 and the coefficientsa,b, andd
obey a nonlinear system of ordinary differential equation

ȧ5v0
2d2gTd2, ḃ52gb~122bT!2d, ~4!

ḋ52~v0
2b2a!2gd12gd~122bT!. ~5!
3954 ©1999 The American Physical Society
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PRE 59 3955QUENCHING OF A BROWNIAN OSCILLATOR
Once the values ofa, b, and d are obtained, one ca
compute all relevant thermodynamic quantities, namely
average kinetic and configurational energies,

K̄5a/D, Ū5bv0
2/D, ~6!

as well as the entropy,S, and the specific heat,C
5d/dT(K̄1Ū):

S52E E dxdp f ln~ f /e!521 ln$2p/AD%, ~7!

C5~ Ṫ!21gT~122a/DT!. ~8!

In the static case,Ṫ50, Eqs.~4! and~5! have three nega
tive eigenvalues for strong dampingg.2A2v0 , or one
negative and two complex eigenvalues otherwise. One
show that for an arbitrary quench (Ṫ,0) the value ofD(t)
remains positive, so that the even solution under consi
ation is reasonable; for more complicated thermal schedu
however, the situation is less clear and lies outside the sc
of the present work@9#.

For infinitely slow processes, Eqs.~4! and ~5! predict
standard equipartition witha5v0

2/2T, b51/2T, d50, and

C51. For finiteṪ we still assume that the quench is slow
a ‘‘molecular scale’’ ~i.e., compared tov0). Violation of
equipartition is possible due to large values ofg at low tem-
peratures. Indeed, the system~4! and ~5! has a small eigen
value 2v0

2/g, implying a diverging relaxation time in the
strongly overdamped case.

In the limit g→`, Eqs. ~4! and ~5! lead to near-
equilibrium values ofb andd; deviation ofb from 1/2T is
still important, however, for correct evaluation of speci
heat from Eq.~8!. The value ofD remains positive for both
quench and heating stages. The equation fora results in a
known form of the relaxation equation for the structural e
ergy

dŪ/dt5~T/22Ū !2v0
2/g. ~9!

For Ū to be close to its equilibrium values, relaxatio
must keep up with the changing temperature. Equation
type ~9! with different phenomenological relaxation time
received much attention in the past@10,11#. What was not
expected, however, was that a closed-form solution of s
equations is possible at lowT, which is asymptotically insen
sitive to the details of the relaxation temperature depende
and which describes both the quench and the heating sta

Let us switch to a dimensionless ‘‘time,’’t, defined as
dt5dt2v0

2/g with a zero value atT50 and negative value
in the quench stage. Due to a rapid increase of dampin
low temperatures, one has

t'7$q̃g̃~2 ln g̃ !T8%
21. ~10!

The upper and lower sign correspond to quench and reh
ing, respectively, andq̃5qg0/2v0

2 is the dimensionless
quench or heating rate.

The values ofŪ are insensitive to conditions att→2`
where equilibration is fast, and one obtains for t
quenched-in structural energy
e

an

r-
s,
pe

-

of

h

ce
es.

at

at-

Ū~0!5
1

2 E
0

`

dtT~2t!exp~2t!. ~11!

In the limit of small q̃ the temperatureT is a slow
~logarithmic-type! function of t which follows from Eq.
~10!. Let T* determine the temperature for whicht521.
ExpandingT in powers of lnt and performing the integra
tion, one obtains

Ū~0!.
1

2
$T* 20.5772 . . . /~2 ln g̃ !T8%[

1

2
Tf , ~12!

where the logarithmic derivative is evaluated atT5T* . Pri-
marily, the quenched-in structural energy is determined
T* /2; the correction term — the one with Euler’s constant
Eq. ~12! — is useful for estimations of accuracy of the lea
ing expression.Tf is similar to what is known as ‘‘fictive
temperature’’ in glass transformation literature@4,12#. Spa-
tial fluctuations are frozen-in with a distribution which co
responds to equilibrium atT5Tf ~although a strictly equilib-
rium shape, most likely, is due to harmonicity of th
oscillator!.

Sinceg increases at lowT faster than an exponential, th
value of T* changes with the quench rate slower than
logarithm. For example, for the empirical dependenceg̃
5exp$k/(T2T0)% ~with k and T0 known as the Vogel-
Fulcher parameters!, one has

T* 5T01k/@ ln~k/q̃!22 ln ln~k/q̃!# ~13!

so that the fictive temperature increases approximately
versely proportional to the absolute value of the logarithm
the quench rate, approachingT0 in the strict limit q̃50.

In the same approximation one gets the entropy, Eq.~7!,
as

S~T!5~1/2!ln~ŪT!1 ln~e22pA2/v0!. ~14!

At T→0 its structural part acquires a quenched-in value
(1/2)ln(Tf /2).

The t dependence of the specific heat is given by

C~t!5
1

2
1

1

2
~dT/dt!21E

0

` d

dt
T~t2t8!exp~2t8!dt8.

~15!

The value ofdT/dt in the above expression is determined
1/t(2 ln g)T8 . In the limit q̃→0 the logarithmic term varies
slowly compared to 1/t, and the second term in Eq.~15! can
be evaluated asymptotically as2(1/2)t exp(2t)E1(2t),
where E1 is the first exponential integral@13#. Reheating
with an identical rateq can be described as an analytic
continuation of the above expression to positivet. This leads
to an exponential integral, Ei(t)52E1(2t), and gives for
C5(1/2)(11dC) the following expression:

dC511t exp~2t!Ei~t!. ~16!

This variable part of the specific heat which is a univer
function of the scaling parametert is shown in Fig. 1. Spe-
cifics of a particular system enters through relation oft to
the quench rate and the dissipation via Eq.~10!. During a
quench one getsdC'1/2 at t520.614 . . . , which can be
associated with the calorimetric GT. The temperature of t
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GT can be estimated asTg'T* 20.49/(2 ln g̃)T8 ~with loga-
rithmic derivative evaluated atT5T* ), and is rather close to
Tf .

To obtaindC as a function of temperature, the oscillat
frequencyv0 can be estimated as the speed of sound,vs ,
over the intermolecular distance. Damping can be estima
from the Stokes relation,g56pah/m, with a andm being
the molecular size and mass, respectively, andh the viscos-
ity of the fluid. One thus obtains

t'6
1

q

vs
2r

hT8
~17!

for the scaling parametert with r;m/a3 being the density.
A typical shape of thedC(T) curve is shown in Fig. 2

using parameters fromo-terphenyl for the viscosityh @14#.
Note the closeness of the GT to the experimentally obser
value of 243 K@15#. The ‘‘Fermi’’ and ‘‘Bose’’ types of the
specific heat curves during quench and heating also
strong similarities to experimental observations, as well a
results of numerical simulations — see, e.g.,@4,12,16#. Since
the dimensionless parameterq̃ is smaller than 10212, the
proposed asymptotic description is virtually exact for the
ample considered. Generalizations of the result for uneq
quench-reheating rates will be discussed in Ref.@9#. It seems
appropriate to remark that experimentally realistic shape
thedC(T) curves could signify not only the adequacy of t
proposed Brownian oscillator picture, but also the archety
nature of a single-time relaxation Eq.~9!. For any relaxation
time which rapidly increases at low temperatures, the re

FIG. 1. dC Eq. ~16! as a function of the scaling parameter,t,
for the quench (t,0) and reheating (t.0) stages.
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ation equation will have the same form of the solution giv
by Eq. ~16!, regardless of the underlying model.

For an array of oscillators with a densityn(v) one needs
to consider contributions of each mode. Assuming that
damping parameter for each mode is identical, one has f
Eqs.~10! and ~16! written in dimensional variables

dC}~ udh/dtu/vs
2r!1/2H E

0

tmax
ndtAt exp~2t!Ei~t!J

~18!

with tmax52vmax
2 /(dg/dt). Note that the presence of slowe

oscillators does not have a dramatic effect on the location
the GT, although the shape of thedC(T) curve can be modi-
fied. Specifics of this curve are determined by the expl
form of the spectral density,n(v). For example, for a
power-law spectrumdC(T) will remain a universal function
of tmax. An interesting point is the dependence of the res
on the rate of the viscosity change, but not on its abso
values. A detailed investigation ofdC(T) for typical spectra
will be presented elsewhere@9#.

To summarize, an asymptotic study of the nonequilibriu
thermodynamics of a quenched Brownian oscillator in a fl
with diverging viscosity was performed. It was shown th
the system exhibits certain qualitative features of a cal
metric glass transition, namely the abrupt drop in spec
heat~and its overshoot during reheating!, nonzero values of
the quenched-in structural energy, and residual entropy. A
lytically, the key result of the study is the expression for t
variable part of the specific heat, Eq.~16!, which is a univer-
sal function of a single scaling parameter,t.

FIG. 2. Temperature dependence of the specific heat du
quench and reheating withq.1022 K/s. Viscosity data for
o-terphenyl by Laughlin and Uhlmann~1972! were used to evaluate
t in Eqs. ~16! and ~17!. Changingq by a factor of 10 shifts the
curves by about 4 K.
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